Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38628155

ABSTRACT

Optimal stomatal regulation is important for plant adaptation to changing environmental conditions and for maintaining crop yield. The guard-cell signal GABA is produced from glutamate by Glutamate Decarboxylase (GAD) during a reaction that generates carbon dioxide (CO2) as a by-product. Here, we investigated a putative connection between GABA signalling and the more clearly defined CO2 signalling pathway in guard cells. The GABA-deficient mutant lines gad2-1, gad2-2 and gad1/2/4/5 were examined for stomatal sensitivity to various CO2 concentrations. Our findings show a phenotypical discrepancy between the allelic mutant lines gad2-1 and gad2-2 - a weakened CO2 response in gad2-1 (GABI_474_E05) in contrast to a wild-type response in gad2-2 (SALK_028819) and gad1/2/4/5. Through transcriptomic and genomic investigation, we traced the response of gad2-1 to a deletion of full-length Mitogen-activated protein kinase 12 (MPK12) in the GABI-KAT line, thereafter as renamed gad2-1*. Guard cell-specific complementation of MPK12 restored the gad2-1* CO2 phenotype, which confirms the proposed importance of MPK12 to CO2 sensitivity. Additionally, we found that stomatal opening under low atmospheric CO2 occurs independently of the GABA-modulated opening-channel ALMT9. Our results confirm that GABA has a role in modulating the rate of stomatal opening and closing - but not in response to CO2  per se.

2.
Proc Natl Acad Sci U S A ; 121(7): e2313343121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315839

ABSTRACT

Plants tightly control growth of their lateral organs, which led to the concept of apical dominance. However, outgrowth of the dormant lateral primordia is sensitive to the plant's nutritional status, resulting in an immense plasticity in plant architecture. While the impact of hormonal regulation on apical dominance is well characterized, the prime importance of sugar signaling to unleash lateral organ formation has just recently emerged. Here, we aimed to identify transcriptional regulators, which control the trade-off between growth of apical versus lateral organs. Making use of locally inducible gain-of-function as well as single and higher-order loss-of-function approaches of the sugar-responsive S1-basic-leucine-zipper (S1-bZIP) transcription factors, we disclosed their largely redundant function in establishing apical growth dominance. Consistently, comprehensive phenotypical and analytical studies of S1-bZIP mutants show a clear shift of sugar and organic nitrogen (N) allocation from apical to lateral organs, coinciding with strong lateral organ outgrowth. Tissue-specific transcriptomics reveal specific clade III SWEET sugar transporters, crucial for long-distance sugar transport to apical sinks and the glutaminase GLUTAMINE AMIDO-TRANSFERASE 1_2.1, involved in N homeostasis, as direct S1-bZIP targets, linking the architectural and metabolic mutant phenotypes to downstream gene regulation. Based on these results, we propose that S1-bZIPs control carbohydrate (C) partitioning from source leaves to apical organs and tune systemic N supply to restrict lateral organ formation by C/N depletion. Knowledge of the underlying mechanisms controlling plant C/N partitioning is of pivotal importance for breeding strategies to generate plants with desired architectural and nutritional characteristics.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Plant Breeding , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Plants/metabolism , Signal Transduction/genetics , Sugars , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant Genome ; 17(1): e20372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37518859

ABSTRACT

Date palm (Phoenix dactylifera L.) is able to grow and complete its life cycle while being rooted in highly saline soils. Which of the many well-known salt-tolerance strategies are combined to fine-tune this remarkable resilience is unknown. The precise location, whether in the shoot or the root, where these strategies are employed remains uncertain, leaving us unaware of how the various known salt-tolerance mechanisms are integrated to fine-tune this remarkable resilience. To address this shortcoming, we exposed date palm to a salt stress dose equivalent to seawater for up to 4 weeks and applied integrative multi-omics analyses followed by targeted metabolomics, hormone, and ion analyses. Integration of proteomic into transcriptomic data allowed a view beyond simple correlation, revealing a remarkably high degree of convergence between gene expression and protein abundance. This sheds a clear light on the acclimatization mechanisms employed, which depend on reprogramming of protein biosynthesis. For growth in highly saline habitats, date palm effectively combines various salt-tolerance mechanisms found in both halophytes and glycophytes: "avoidance" by efficient sodium and chloride exclusion at the roots, and "acclimation" by osmotic adjustment, reactive oxygen species scavenging in leaves, and remodeling of the ribosome-associated proteome in salt-exposed root cells. Combined efficiently as in P. dactylifera L., these sets of mechanisms seem to explain the palm's excellent salt stress tolerance.


Subject(s)
Phoeniceae , Phoeniceae/genetics , Salt-Tolerant Plants/genetics , Multiomics , Proteomics , Seawater
4.
Sci Total Environ ; 862: 160675, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36481139

ABSTRACT

Chronic ozone (O3) exposure in the atmosphere preferentially disturbs metabolic processes in the roots rather than the shoot as a consequence of reduced photosynthesis and carbohydrate allocation from the leaves to the roots. The aim of the present study was to elucidate if mineral nutrition is also impaired by chronic O3 exposure. For this purpose, date palm (Phoenix dactylifera) plants were fumigated with ambient, 1.5 × ambient and 2 × ambient O3 in a free air controlled exposure (FACE) system for one growing season and concentrations of major nutrients were analyzed in leaves and roots. In addition, concentrations of C and N and their partitioning between different metabolic C and N pools were determined in both organs. The results showed that calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), sodium (Na) and potassium (K) acquisition by roots was diminished by O3 exposure of the shoot. For Ca, Mg, Fe and Zn reduced uptake by the roots was combined with reduced allocation to the shoot, resulting in a decline of foliar concentrations; for Na and K, allocation to the shoot was maintained at the expense of the roots. Thus, elevated O3 impaired both mineral uptake by the roots and partitioning of minerals between roots and shoots, but in an element specific way. Thereby, elevated O3 affected roots and shoots differently already after one growing season. However, considerable changes in total C and N concentrations and their partitioning between different metabolic pools upon chronic O3 exposure were not observed in either leaves or roots, except for reduced foliar lignin concentrations at 2 × ambient O3. Significant differences in these parameters were shown between leaves and roots independent of O3 application. The physiological consequences of the effects of chronic O3 exposure on mineral acquisition and partitioning between leaves and roots are discussed.


Subject(s)
Ozone , Phoeniceae , Seedlings/metabolism , Minerals , Photosynthesis , Calcium/metabolism , Ozone/metabolism , Plant Leaves/physiology
5.
Tree Physiol ; 43(4): 587-596, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36579827

ABSTRACT

Drought and salt exposure are among the most prevalent and severe abiotic stressors causing serious agricultural yield losses, alone and in combination. Little is known about differences and similarities in the effects of these two stress factors on plant metabolic regulation, particularly on nitrogen metabolism. Here, we studied the effects of water deprivation and salt exposure on water relations and nitrogen metabolites in leaves and roots of date palm seedlings. Both, water deprivation and salt exposure had no significant effects on plant water content or stable carbon (C) and nitrogen (N) isotope signatures. Significant effects of water deprivation on total C and N concentrations were only observed in roots, i.e., decreased total C and increased total N concentrations. Whereas salt exposure initially decreased total C and increased total N concentrations significantly in roots, foliar total C concentration was increased upon prolonged exposure. Initially C/N ratios declined in roots of plants from both treatments and upon prolonged salt exposure also in the leaves. Neither treatment affected soluble protein and structural N concentrations in leaves or roots, but resulted in the accumulation of most amino acids, except for glutamate and tryptophan, which remained stable, and serine, which decreased, in roots. Accumulation of the most abundant amino acids, lysine and proline, was observed in roots under both treatments, but in leaves only upon salt exposure. This finding indicates a similar role of these amino acids as compatible solutes in the roots in response to salt und drought, but not in the leaves. Upon prolonged treatment, amino acid concentrations returned to levels found in unstressed plants in leaves of water deprived, but not salt exposed, plants. The present results show both water deprivation and salt exposure strongly impact N metabolism of date palm seedlings, but in a different manner in leaves and roots.


Subject(s)
Phoeniceae , Phoeniceae/metabolism , Seedlings/physiology , Water Deprivation , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Amino Acids/metabolism , Water/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism
6.
New Phytol ; 235(5): 1822-1835, 2022 09.
Article in English | MEDLINE | ID: mdl-35510810

ABSTRACT

Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.


Subject(s)
Chenopodium quinoa , Salt Tolerance , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Ion Transport , Ions/metabolism , Potassium/metabolism , Salinity , Salt Tolerance/physiology , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Urinary Bladder/metabolism
7.
Oecologia ; 197(4): 903-919, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33880635

ABSTRACT

Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.


Subject(s)
Phoeniceae , Droughts , Photosynthesis , Plant Leaves , Saudi Arabia , Stress, Physiological
9.
New Phytol ; 231(3): 1040-1055, 2021 08.
Article in English | MEDLINE | ID: mdl-33774818

ABSTRACT

Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Ion Transport , Plant Stomata/metabolism , Salt Stress , Salt-Tolerant Plants/metabolism
10.
J Exp Bot ; 72(2): 757-774, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33529339

ABSTRACT

The identification of those prevalent abscisic acid (ABA) receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant-environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, with Pd27 being the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root, and guard cells. Specifically, Pd27-overexpressing plants showed lower ABA content and were more efficient than the wild type in lowering transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phoeniceae , Abscisic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Phoeniceae/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological
11.
Environ Res ; 195: 110868, 2021 04.
Article in English | MEDLINE | ID: mdl-33581095

ABSTRACT

Date palms are highly economically important species in hot arid regions, which may suffer ozone (O3) pollution equivalently to heat and water stress. However, little is known about date palm sensitivity to O3. Therefore, to identify their resistance mechanisms against elevated O3, physiological parameters (leaf gas exchange, chlorophyll fluorescence and leaf pigments) and biomass growth responses to realistic O3 exposure were tested in an isoprene-emitting date palm (Phoenix dactylifera L. cv. Nabut Saif) by a Free-Air Controlled Exposure (FACE) facility with three levels of O3 (ambient [AA, 45 ppb as 24-h average], 1.5 x AA and 2 x AA). We found a reduction of photosynthesis only at 2 x AA although some foliar traits known as early indicators of O3 stress responded already at 1.5 x AA, such as increased dark respiration, reduced leaf pigment content, reduced maximum quantum yield of PSII, inactivation of the oxygen evolving complex of PSII and reduced performance index PITOT. As a result, O3 did not affect most of the growth parameters although significant declines of root biomass occurred only at 2 x AA. The major mechanism in date palm for reducing the severity of O3 impacts was a restriction of stomatal O3 uptake due to low stomatal conductance and O3-induced stomatal closure. In addition, an increased respiration in elevated O3 may indicate an enhanced capacity of catabolizing metabolites for detoxification and repair. Interestingly, date palm produced low amounts of monoterpenes, whose emission was stimulated in 2 x AA, although isoprene emission declined at both 1.5 and 2 x AA. Our results warrant more research on a biological significance of terpenoids in plant resistance against O3 stress.


Subject(s)
Air Pollutants , Ozone , Phoeniceae , Air Pollutants/toxicity , Ozone/toxicity , Photosynthesis , Plant Leaves
12.
Tree Physiol ; 41(9): 1685-1700, 2021 09 10.
Article in English | MEDLINE | ID: mdl-33607652

ABSTRACT

Drought negatively impacts growth and productivity of plants, particularly in arid and semi-arid regions. Although drought events can take place in summer and winter, differences in the impact of drought on physiological processes between seasons are largely unknown. The aim of this study was to elucidate metabolic strategies of date palms in response to drought in summer and winter season. To identify such differences, we exposed date palm seedlings to a drought-recovery regime, both in simulated summer and winter climate. Leaf hydration, carbon discrimination (${\Delta}$13C), and primary and secondary metabolite composition and contents were analyzed. Depending on season, drought differently affected physiological and biochemical traits of the leaves. In summer, drought induced significantly decreased leaf hydration, concentrations of ascorbate, most sugars, primary and secondary organic acids, as well as phenolic compounds, while thiol, amino acid, raffinose and individual fatty acid contents were increased compared with well-watered plants. In winter, drought had no effect on leaf hydration, ascorbate and fatty acids contents, but resulted in increased foliar thiol and amino acid levels as observed in summer. Compared with winter, foliar traits of plants exposed to drought in summer only partly recovered after re-watering. Memory effects on water relations, and primary and secondary metabolites seem to prepare foliar traits of date palms for repeated drought events in summer. Apparently, a well-orchestrated metabolic network, including the anti-oxidative system, compatible solutes accumulation and osmotic adjustment, and maintenance of cell-membrane stability strongly reduces the susceptibility of date palms to drought. These mechanisms of drought compensation may be more frequently required in summer.


Subject(s)
Phoeniceae , Droughts , Plant Leaves , Seasons , Seedlings
13.
J Exp Bot ; 71(18): 5333-5347, 2020 09 19.
Article in English | MEDLINE | ID: mdl-32643753

ABSTRACT

Crops tolerant to drought and salt stress may be developed by two approaches. First, major crops may be improved by introducing genes from tolerant plants. For example, many major crops have wild relatives that are more tolerant to drought and high salinity than the cultivated crops, and, once deciphered, the underlying resilience mechanisms could be genetically manipulated to produce crops with improved tolerance. Secondly, some minor (orphan) crops cultivated in marginal areas are already drought and salt tolerant. Improving the agronomic performance of these crops may be an effective way to increase crop and food diversity, and an alternative to engineering tolerance in major crops. Quinoa (Chenopodium quinoa Willd.), a nutritious minor crop that tolerates drought and salinity better than most other crops, is an ideal candidate for both of these approaches. Although quinoa has yet to reach its potential as a fully domesticated crop, breeding efforts to improve the plant have been limited. Molecular and genetic techniques combined with traditional breeding are likely to change this picture. Here we analyse protein-coding sequences in the quinoa genome that are orthologous to domestication genes in established crops. Mutating only a limited number of such genes by targeted mutagenesis appears to be a promising route for accelerating the improvement of quinoa and generating a nutritious high-yielding crop that can meet the future demand for food production in a changing climate.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Droughts , Plant Breeding , Salinity , Salt Stress
14.
J Exp Bot ; 70(20): 5959-5969, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31375818

ABSTRACT

Date palms are remarkably tolerant to environmental stresses, but the mechanisms involved remain poorly characterized. Leaf metabolome profiling was therefore performed on mature (ML) and young (YL) leaves of 2-year-old date palm seedlings that had been grown in climate chambers that simulate summer and winter conditions in eastern Saudi Arabia. Cultivation under high temperature (summer climate) resulted in higher YL H2O2 leaf levels despite increases in dehydroascorbate reductase (DHAR) activities. The levels of raffinose and galactinol, tricarboxylic acid cycle intermediates, and total amino acids were higher under these conditions, particularly in YL. The accumulation of unsaturated fatty acids, 9,12-octadecadienoic acid and 9,12,15-octadecatrienoic acid, was lower in ML. In contrast, the amounts of saturated tetradecanoic acid and heptadecanoic acid were increased in YL under summer climate conditions. The accumulation of phenolic compounds was favored under summer conditions, while flavonoids accumulated under lower temperature (winter climate) conditions. YL displayed stronger hydration, lower H2O2 levels, and more negative δ 13C values, indicating effective reactive oxygen species scavenging. These findings, which demonstrate the substantial metabolic adjustments that facilitate tolerance to the high temperatures in YL and ML, suggest that YL may be more responsive to climate change.


Subject(s)
Metabolome/physiology , Phoeniceae/metabolism , Plant Leaves/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Metabolome/genetics , Metabolomics , Phenol/metabolism , Phenols/metabolism , Phoeniceae/genetics , Plant Leaves/genetics , Reactive Oxygen Species/metabolism , Temperature
15.
Nat Plants ; 5(9): 1002-1011, 2019 09.
Article in English | MEDLINE | ID: mdl-31451795

ABSTRACT

Stomata are microscopic pores found on the surfaces of leaves that act to control CO2 uptake and water loss. By integrating information derived from endogenous signals with cues from the surrounding environment, the guard cells, which surround the pore, 'set' the stomatal aperture to suit the prevailing conditions. Much research has concentrated on understanding the rapid intracellular changes that result in immediate changes to the stomatal aperture. In this study, we look instead at how stomata acclimate to longer timescale variations in their environment. We show that the closure-inducing signals abscisic acid (ABA), increased CO2, decreased relative air humidity and darkness each access a unique gene network made up of clusters (or modules) of common cellular processes. However, within these networks some gene clusters are shared amongst all four stimuli. All stimuli modulate the expression of members of the PYR/PYL/RCAR family of ABA receptors. However, they are modulated differentially in a stimulus-specific manner. Of the six members of the PYR/PYL/RCAR family expressed in guard cells, PYL2 is sufficient for guard cell ABA-induced responses, whereas in the responses to CO2, PYL4 and PYL5 are essential. Overall, our work shows the importance of ABA as a central regulator and integrator of long-term changes in stomatal behaviour, including sensitivity, elicited by external signals. Understanding this architecture may aid in breeding crops with improved water and nutrient efficiency.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Intracellular Signaling Peptides and Proteins/genetics , Receptors, Cell Surface/genetics , Signal Transduction/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Plant Stomata/physiology , Receptors, Cell Surface/metabolism
16.
Curr Biol ; 28(19): 3075-3085.e7, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30245105

ABSTRACT

Soil salinity is destroying arable land and is considered to be one of the major threats to global food security in the 21st century. Therefore, the ability of naturally salt-tolerant halophyte plants to sequester large quantities of salt in external structures, such as epidermal bladder cells (EBCs), is of great interest. Using Chenopodium quinoa, a pseudo-cereal halophyte of great economic potential, we have shown previously that, upon removal of salt bladders, quinoa becomes salt sensitive. In this work, we analyzed the molecular mechanism underlying the unique salt dumping capabilities of bladder cells in quinoa. The transporters differentially expressed in the EBC transcriptome and functional electrophysiological testing of key EBC transporters in Xenopus oocytes revealed that loading of Na+ and Cl- into EBCs is mediated by a set of tailored plasma and vacuole membrane-based sodium-selective channel and chloride-permeable transporter.


Subject(s)
Chenopodium quinoa/metabolism , Salt-Tolerant Plants/metabolism , Vacuoles/metabolism , Epidermal Cells/metabolism , Epidermal Cells/physiology , Membrane Transport Proteins , Plant Proteins/metabolism , Salinity , Salt Tolerance/physiology , Sodium/metabolism , Sodium Channels/metabolism , Soil/chemistry , Stress, Physiological , Transcriptome
17.
Environ Pollut ; 242(Pt A): 905-913, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30041163

ABSTRACT

Vegetation in the Arabian Peninsula is facing high and steadily rising tropospheric ozone pollution. However, little is known about the impacts of elevated ozone on date palms, one of the most important indigenous economic species. To elucidate the physiological responses of date palm to peak levels of acute ozone exposure, seedlings were fumigated with 200 ppb ozone for 8 h. Net CO2 assimilation rate, stomatal conduction, total carbon, its isotope signature and total sugar contents in leaves and roots were not significantly affected by the treatment and visible symptoms of foliar damage were not induced. Ozone exposure did not affect hydrogen peroxide and thiol contents but diminished the activities of glutathione reductase and dehydroascorbate reductase, stimulated the oxidation of ascorbate, and resulted in elevated total ascorbate contents. Total nitrogen, soluble protein and lignin contents remained unchanged upon ozone exposure, but the abundance of low molecular weight nitrogen (LMWN) compounds such as amino acids and nitrate as well as other anions were strongly diminished in leaves and roots. Other nitrogen pools did not benefit from the decline of LMWN, indicating reduced uptake and/or enhanced release of these compounds into the soil as a systemic response to aboveground ozone exposure. Several phenolic compounds, concurrent with fatty acids and stearyl alcohol, accumulated in leaves, but declined in roots, whereas total phenol contents significantly increased in the roots. Together these results indicate that local and systemic changes in both, primary and secondary metabolism contribute to the high tolerance of date palms to short-term acute ozone exposure.


Subject(s)
Air Pollutants/toxicity , Ozone/toxicity , Phoeniceae/physiology , Temperature , Air Pollutants/metabolism , Ascorbic Acid/metabolism , Glutathione Reductase/metabolism , Nitrogen/metabolism , Ozone/metabolism , Plant Leaves/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/physiology
18.
Curr Biol ; 28(9): 1370-1379.e5, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29706511

ABSTRACT

The latest major group of plants to evolve were the grasses. These became important in the mid-Paleogene about 40 million years ago. During evolution, leaf CO2 uptake and transpirational water loss were optimized by the acquisition of grass-specific stomatal complexes. In contrast to the kidney-shaped guard cells (GCs) typical of the dicots such as Arabidopsis, in the grasses and agronomically important cereals, the GCs are dumbbell shaped and are associated with morphologically distinct subsidiary cells (SCs). We studied the molecular basis of GC action in the major cereal crop barley. Upon feeding ABA to xylem sap of an intact barley leaf, stomata closed in a nitrate-dependent manner. This process was initiated by activation of GC SLAC-type anion channel currents. HvSLAC1 expressed in Xenopus oocytes gave rise to S-type anion currents that increased several-fold upon stimulation with >3 mM nitrate. We identified a tandem amino acid residue motif that within the SLAC1 channels differs fundamentally between monocots and dicots. When the motif of nitrate-insensitive dicot Arabidopsis SLAC1 was replaced by the monocot signature, AtSLAC1 converted into a grass-type like nitrate-sensitive channel. Our work reveals a fundamental difference between monocot and dicot GCs and prompts questions into the selective pressures during evolution that resulted in fundamental changes in the regulation of SLAC1 function.


Subject(s)
Hordeum/physiology , Nitrates/pharmacology , Plant Proteins/metabolism , Plant Stomata/physiology , Poaceae/physiology , Abscisic Acid/pharmacology , Amino Acid Motifs , Animals , Anions/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Evolution, Molecular , Hordeum/drug effects , Hordeum/metabolism , Ion Channel Gating , Membrane Proteins/genetics , Membrane Proteins/metabolism , Oocytes/cytology , Oocytes/drug effects , Oocytes/physiology , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Stomata/drug effects , Plant Stomata/metabolism , Poaceae/drug effects , Poaceae/metabolism , Protein Conformation , Signal Transduction , Transcriptome , Xenopus laevis/physiology
19.
Cell Res ; 27(11): 1327-1340, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28994416

ABSTRACT

Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa.


Subject(s)
Chenopodium quinoa/genetics , Genome, Plant , Salinity , Abscisic Acid/biosynthesis , Abscisic Acid/metabolism , Chenopodium quinoa/chemistry , Chenopodium quinoa/classification , Chenopodium quinoa/metabolism , Evolution, Molecular , Genomics , Lysine/analysis , Molecular Sequence Annotation , Phylogeny , Plant Epidermis/cytology , Plant Epidermis/metabolism , Signal Transduction , Transcriptome
20.
New Phytol ; 216(1): 150-162, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28670699

ABSTRACT

Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl- medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium.


Subject(s)
Anions/metabolism , Desert Climate , Nitrates/pharmacology , Phoeniceae/physiology , Plant Proteins/metabolism , Plant Stomata/physiology , Abscisic Acid/metabolism , Chlorides/metabolism , Droughts , Light , Osmosis , Phoeniceae/drug effects , Phoeniceae/radiation effects , Phoeniceae/ultrastructure , Plant Stomata/cytology , Plant Stomata/drug effects , Plant Stomata/ultrastructure , RNA, Plant/metabolism , Subcellular Fractions/metabolism , Waxes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...